Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

The Handling of Non-Uniform Parts and Peak Hand Forces

2009-06-09
2009-01-2307
Due to the challenges in quantifying hand loads in manufacturing environments it is often assumed that the load is evenly distributed between the hands, even when handling parts with non-uniform mass distribution. This study estimated hand loads for six female subjects, when handling a custom part in 8 different configurations (2 weights, 4 CofM locations). The calculated hand loads varied from 20 to 50% of the weight being handled. The magnitude of asymmetrical hand loading depended on both the part orientation and the location of the CoM. Based on this study the knowledge of part weight, CofM location and hand positioning will allow the users of digital human models to perform more realistic and reliable task analysis assessments as the force distributions will be more representative of the actual loading rather than simply assuming the load is evenly distributed between the hands.
Technical Paper

The Ford Motor Company Spin-Torsional NVH Test Facility-2

2003-05-05
2003-01-1684
The Ford Spin Torsional NVH TEST Facility developed and completed in 1999 as a state-of-the-art powertrain NVH development facility(1). Since then, various designed capabilities have been verified with test vehicles for multiple applications to facilitate powertrain NVH development. This paper describes fundamental capabilities of the test facility, including input module to simulate engine torque signatures of arbitrary engines (“virtual engine” capability) and absorbing dynamometer systems, functioning as a precision 4WD/AWD chassis dynamometer. The correlation between road test/chassis dynamometer test and Spin-Torsional test is then illustrated, verifying high correlation of vehicle/sub-system responses between conventional vehicle testing and Spin-Torsional test results.
Technical Paper

The Finite Element Analysis of Planetary Gear Pinion Shaft Staking

2016-04-05
2016-01-1358
During the planetary gear assembly, staking is a widely-used method for affixing pinion shafts onto the position. A reliable staking process not only prevents the movement of shaft during transmission operation, but also minimizes the distortion of the assembly due to the staking process. The quality of staking operations is determined by the component designs, the process parameters, and the staking tool geometry. It would be extremely time-consuming and tedious to evaluate these factors empirically; not even mention the requirement of prototypes in the early stage of a new program. A Finite Element methodology is developed to simulate the complete staking process including shaft press in, staking, and after staking tool release. The critical process parameters, such as staking force, staking length, shaft and holes interference amount, etc., are then evaluated systematically.
Technical Paper

The Effects of Skull Thickness Variations on Human Head Dynamic Impact Responses

2001-11-01
2001-22-0018
Variations in human skull thickness affecting human head dynamic impact responses were studied by finite element modeling techniques, experimental measurements, and histology examinations. The aims of the study were to better understand the influences of skull thickness variations on human head dynamic impact responses and the injury mechanisms of human head during direct impact. The thicknesses of the frontal bone of seven human cadaver skulls were measured using ultrasonic technology. These measurements were compared with previous experimental data. Histology of the skull was recorded and examined. The measured data were analyzed and then served as a reference to vary the skull thickness of a previously published three-dimensional finite element human head model to create four models with different skull thickness. The skull thicknesses modeled are 4.6 mm, 5.98 mm, 7.68 mm, and 9.61 mm.
Technical Paper

The Effects of Internal Friction on Automotive Latch and Release System Behavior

2019-04-18
2019-01-5025
Physical tests and analysis of a typical automobile latch and outside handle release mechanism are performed to determine the effects of friction on the systems dynamic response. An automobile side door outside handle, outside handle rod linkage, and latch are mounted to a rigid fixture that is constrained by bearings to a “drop tower.” The fixture is released from controlled heights onto a compliant impact surface resulting in a constant duration acceleration transient of varying amplitude. An instrumented door latch striker is designed into the fixture to engage the latch. The pre-drop interface load between the latch and striker is adjusted allowing its effect on the dynamic behavior to be characterized. The latch position and the interface load between the latch and striker are monitored throughout the test. The results of the test show that friction forces internal to the latch significantly affect the quasistatic and dynamic behavior of the latching system.
Technical Paper

The Effects of Front Suspension Parameters on Road Wheel Toe Dynamics

2001-03-05
2001-01-0482
Front road wheel toe dynamics directly affects tire wear and steering wheel vibration, which in turn negatively impacts customer satisfaction. Though static toe can be preset in assembly plants, the front road wheels can vibrate around steering axes or kingpin axes due to tire mass unbalance and nonuniformity. The frequency of the vibration depends on the wheel size and vehicle speed, while the amplitude of the vibration is not only dictated by the tire forces, but also by suspension and steering parameters. This paper presents a study on the sensitivities of the front road wheel toe dynamics to the parameters of a short-long-arm suspension (SLA) and a parallelogram steering system. These parameters includes hard point shift, steering gear compliance, gear friction, control arm bushing rates, friction in control arm ball joints, and compliance in tie rod outboard joints.
Technical Paper

The Effects of Flare Component Specifications on the Sealing of Double Inverted Flare Brake Tube Joints

2009-04-20
2009-01-1029
While SAE double inverted flares have been in use for decades, leaking joints continue to be a problem for OEMs in production settings consuming time and energy to detect and correct them before releasing vehicles from the assembly plant. It should be noted that this issue is limited to first-time vehicle assembly; once a flared brake tube joint is sealed at the assembly plant it remains sealed during normal customer usage. From their inception through the late 1980s most brake tubes have been 3/16″ nominal diameter. With the advent of higher flow requirements of Traction Control and Yaw/Stability control systems, larger tubes of 1/4″ and 5/16″ size have also been introduced. While it was known that the first-time sealing capability of the 3/16″ joint was not 100%, leakers were generally containable in the production environment and the joint was regarded as robust.
Technical Paper

The Effects of Different Input Excitation on the Dynamic Characterization of an Automotive Shock Absorber

2001-04-30
2001-01-1442
This paper deals with the dynamic characterization of an automotive shock absorber, a continuation of an earlier work [1]. The objective of this on-going research is to develop a testing and analysis methodology for obtaining dynamic properties of automotive shock absorbers for use in CAE-NVH low-to-mid frequency chassis models. First, the effects of temperature and nominal length on the stiffness and damping of the shock absorber are studied and their importance in the development of a standard test method discussed. The effects of different types of input excitation on the dynamic properties of the shock absorber are then examined. Stepped sine sweep excitation is currently used in industry to obtain shock absorber parameters along with their frequency and amplitude dependence. Sine-on-sine testing, which involves excitation using two different sine waves has been done in this study to understand the effects of the presence of multiple sine waves on the estimated dynamic properties.
Technical Paper

The Effects of Body Joint Designs on Liftgate Chucking Performance

2005-05-16
2005-01-2541
Liftgate chucking is one of the major squeak and rattle concerns for vehicles with a large body closure opening in the liftgate area. High frequency chucking noise is generated as a result of the contact between the latch and striker of a liftgate. Traditionally, liftgate chucking problems (if present) are found and fixed by using a more robust latch/striker mechanism at a very late design stage that normally results in cost penalties for vehicle programs. Significant effort has been made at Ford in identifying and clarifying up-front drivers or body performance metrics that predominantly influence downstream squeak and rattle sensitivity. Two key body performance metrics (diagonal distortions at the liftgate opening and relative displacement between the latch and striker of a liftgate) are found to affect liftgate chucking sensitivity. The effects of body joint designs on liftgate chucking performance are discussed using these metrics in CAE analyses.
Technical Paper

The Effect of Vehicle Noise on Automatic Speech Recognition Systems

2017-06-05
2017-01-1864
The performance of a vehicle’s Automatic Speech Recognition (ASR) system is dependent on the signal to noise ratio (SNR) in the cabin at the time a user voices their command. HVAC noise and environmental noise in particular (like road and wind noise), provide high amplitudes of broadband frequency content that lower the SNR within the vehicle cabin, and work to mask the user’s speech. Managing this noise is a vital key to building a vehicle that meets the customer’s expectations for ASR performance. However, a speech recognition engineer is not likely to be the same person responsible for designing the tires, suspension, air ducts and vents, sound package and exterior body shape that define the amount of noise present in the cabin. If objective relationships are drawn between the vehicle level performance of the ASR system, and the vehicle or system level performance of the individual noise, vibration and harshness (NVH) attributes, a partnership between the groups is brokered.
Journal Article

The Effect of Quench Parameters on Self-Piercing Rivet Joint Performance in a High Strength Automotive 6111 Aluminum Alloy

2021-04-06
2021-01-0273
The process parameters to manufacture structural aluminum alloys are critical to their ductility. In particular, quench rate after solution heat treatment impacts the extent of grain boundary precipitation and the formation of precipitate free zone (PFZ) during later artificial aging. Cu-containing 6XXX alloys used for high strength automotive applications are quench sensitive as the Cu addition leads to Q-phase precipitation at grain boundaries, resulting in loss of ductility, which can negatively affect downstream manufacturing steps such as automotive joining and forming processes. Self-piercing rivet (SPR) joining, is a single step, spot joining process used to mechanically connect sheet materials together in automotive body structures. Ductility has been identified as an important metric of material rivet-ability or the ability to make a successful, crack-free SPR joint.
Technical Paper

The Effect of HVAC Buffeting on Automatic Speech Recognition Systems

2017-06-05
2017-01-1781
The design and operation of a vehicle’s heating, ventilation, and air conditioning (HVAC) system has great impact on the performance of the vehicle’s Automatic Speech Recognition (ASR) and Hands-Free Communication (HFC) system. HVAC noise provides high amplitudes of broadband frequency content that affects the signal to noise ratio (SNR) within the vehicle cabin, and works to mask the user’s speech. But what’s less obvious is that when the airflow from the panel vents or defroster openings can be directed toward the vehicle microphone, a mechanical “buffeting” phenomenon occurs on the microphone’s diaphragm that distresses the ASR system beyond its ability to interpret the user’s voice. The airflow velocity can be strong enough that a simple windscreen on the microphone is not enough to eliminate the problem. Minimizing this buffeting effect is a vital key to building a vehicle that meets the customer’s expectations for ASR and HFC performance.
Technical Paper

The Effect of Friction Modifiers and DI Package on Friction Reduction Potential of Next Generation Engine Oils: Part I Fresh Oils

2018-04-03
2018-01-0933
Friction reduction in lubricated components through engine oil formulations has been investigated in the present work. Three different DI packages in combination with one friction modifier were blended in SAE 5 W-20 and SAE 0 W-16 viscosity grades. The friction performance of these oils was compared with GF-5 SAE 5 W-20 oil. A motored cranktrain assembly has been used to evaluate these, in which friction mean effective pressure (FMEP) as a function of engine speeds at different lubricant temperatures is measured. Results show that the choice of DI package plays a significant role in friction reduction. Results obtained from the mini-traction machine (MTM2) provide detailed information on traction coefficient in boundary, mixed and elastohydrodynamic (EHD) lubrication regimes. It has been shown that the results from the cranktrain rig are fairly consistent with those found in MTM2 tests for all the lubricants tested.
Technical Paper

The Current State of Worldwide Standards for Ferrous Castings

2004-03-08
2004-01-0794
Technical Standards are essential for the expanded use of any engineering material. The Society of Automotive Engineers (SAE) Iron and Steel Castings Committee has been reworking existing, (and issuing new), standards for automotive iron and steel castings. This paper will review the status of the SAE standards for Ductile Iron, Austempered Ductile Iron (ADI), Compacted Graphite Iron (CGI) and high Silicon-Molybdenum (Si-Mo) Ductile Iron, Gray Iron and Steel Castings. The SAE Standards, (and draft standards), will be critically compared to those for ASTM and ISO. Salient differences in the standards will be discussed and implications to design engineers will be addressed. Comparisons to other, competitive materials (and their standards) will be made.
Technical Paper

The Application of a One-Way Coupled Aerodynamic and Multi-Body Dynamics Simulation Process to Predict Vehicle Response during a Severe Crosswind Event

2017-03-28
2017-01-1515
Industry trends towards lighter, more aerodynamically efficient road vehicles have the potential to degrade a vehicle’s response to crosswinds. In this paper, a methodology is outlined that indirectly couples a computational fluid dynamics (CFD) simulation of the vehicle’s aerodynamic characteristics with a multi-body dynamics simulation (MBD) to determine yaw, roll and pitch response characteristics during a severe crosswind event. This one-way coupling approach mimics physical test conditions outlined in open loop test procedure ISO 12021:2010 that forms part of the vehicle sign-off criterion at Ford Motor Company. The methodology uses an overset mesh CFD method to drive the vehicle through a prescribed crosswind event, providing unfiltered predictions of vehicle force and moment responses that are used as applied forces in the MBD model. The method does not account for changes in vehicle attitude due to applied aerodynamic forces and moments.
Technical Paper

The Application of Magnesium Die Casting to Vehicle Closures

2005-04-11
2005-01-0338
During the last decade, advances in magnesium die casting technology have enabled the production of large lightweight thin walled die castings that offer new approaches for low investment body construction techniques. As a result, many OEMs have expressed an interest in magnesium door closure systems due to investment reduction opportunities, coupled with potential weight savings of up to 50%. However, for such applications, product engineers are faced with the challenge of designing for stiffness and strength in crash critical applications with a material of lower modulus and ductility compared to wrought sheet product. Concept designs for side door systems have been presented in the literature, and indicate that structural performance targets can be achieved. However, to date, series production designs feature a multitude of supplementary sheet metal reinforcements, attached to die castings, to handle structural loads.
Technical Paper

The Aluminum Beaker Oxidation Test for MERCON™ World-Wide Service ATF

1988-10-01
881673
The Aluminum Beaker Oxidation Test is one of the tests specified for MERCONtm service ATF. The test is now being run at independent laboratories. Passing this and other specified tests is part of the process required to obtain a licence to describe an ATF as MERCONtm. The performance of test facilities at independent laboratories has been monitored by evaluating test data obtained with reference ATFs provided by Ford. The data so obtained, together with data obtained at Ford and other laboratories, have been used to generate a statistically significant data base. This data base has been used to better define test repeatability and reproducibility and thus provide an improved basis for monitoring the performance of test facilities. This paper provides a summary of the test procedure, reviews the data supporting the validity of the test, and presents information on the repeatability and reproducibility of the test method.
Technical Paper

The Advantages of Using Standard Vehicle Dynamics Procedures and Analysis Programs

1998-02-23
981077
Globalization in the automotive industry has resulted in a tremendous competitive advantage to those companies who can internally communicate ideas and information effectively and in a timely manner. This paper discusses one such effort related to objectively testing vehicles for steering and handling characteristics by implementing standard test procedures, data acquisition hardware and analysis methods. Ford Motor Company's Vehicle Dynamics Test Section has refined a number of test procedures to the point that, with proper training, all design and development engineers can quickly acquire, analyze and share test results. Four of these procedures and output are discussed in detail.
Technical Paper

The 1970 Ford Dual Circuit Air Brake System

1970-02-01
700504
The braking system presented in this article represents a new and forward thinking philosophy regarding commercial vehicle air brake systems. A concept that provides responsive service and emergency brake applications with optimum vehicle control, by the same driver action on the brake pedal. The uniqueness of the total system, and each circuit's function thereof, is explained in basic detail. In addition, the engineering, quality control, and assembly techniques to manufacture the vehicle with assurance that design intent is achieved, are discussed.
Technical Paper

Testing of Cooling Module Component for Frontal Impact and Sensor Modeling Development

2003-03-03
2003-01-0501
This paper describes (1) the development of a component test methodology for testing a cooling module including radiator, condenser and trans. cooler, and (2) the associated CAE model development. A series of light truck/SUV cooling module component tests were conducted to obtain their characteristics as inputs for frontal impact and sensor modeling development. First, the cooling module component CAE sub-model was developed using soft springs along with fine-mesh sheet metal shell elements. Second, simulated sub-model results were correlated fairly well with the test data. Third, this component CAE sub-model was then incorporated into a full vehicle CAE model that was used for frontal impact (NCAP) and sensor development. Results indicated that the proposed test method for cooling module components provided consistent data and the results from cooling module sub-model can be incorporated into the full vehicle CAE model for improving the quality and accuracy of CAE models.
X